

点消方: 明治時代、ガスの街路灯を 点けたり消したりした人。 GAS

CO2と地球温暖化 なぜ今、天然ガスが 注目されているのか

地球温暖化は生態系の変化や異常気象など、自然への影響だけでなく、 世界経済や自然災害にも影響する大きな問題です。

そして、わたしたちが毎日使うエネルギーと地球環境も大きく関係しています。

ここでは、地球で起きていることについて学びます。



地球の温暖化が進んでいる

地球温暖化は、ここ数年の変化ではありません。100年、200年といった長い期間で見出される変化です。世界の年平均気温は長期的には1880年以降0.85℃上昇しており、特に1990年代半ば以降、高温となる年が多くなっています。日本では、もともと暖かい地方の植物が北へと広がったり、冬季の降雪・結氷の減少、サクラの開花が早まったりなどの変化が見られます。

そしてもうひとつ大幅に増えているのが、大気中の二酸化炭素(CO₂) 濃度です。過去のデータでは長い期間にわたって280ppm程度で推移していたものが、1750年以降増加し続けており、2011年には、391ppmに達しています。

■世界の平均気温の推移(2010年データ)

■大気中のCO₂濃度の推移

地球温暖化のメカニズム

地球の温暖化は、CO₂などの温室効果ガスが増えることで、大気の温室効果が高まって地球全体の気温が上昇する現象です。 本来は、地球から宇宙へ出て行く赤外線が、温室効果ガスにより大気中にとどまり、大気の温度が上昇するというメカニズムが考えられています。

太陽光

*温室効果ガスが減りすぎると、地球が寒冷化すると考えられている。

*現在の地球の地表平均気温は14°Cで、温室効果ガスがないと地表は、 マイナス19°Cになると考えられている。

CO2排出の現実

温室効果ガスにはCO2のほか、メタン、フロンなど数種類があげられています。このうち最も排出量が多いのがCO2で、これはエネルギー資源として使われている化石燃料を燃焼させることで発生する、いわば人間の活動による排出物です。図は、主要国の国全体の排出割合と国民1人あたりの排出量数値です。

■世界のCO₂排出量に占める主要国の排出割合と

各国1人あたりの排出量の比較(2011年)

日本の部門別CO:排出量の割合(各部門の間接排出量) ゴミを燃やすとき2.0% セメント・石炭 などをつくるとき 3.0% 自動車・船 飛行機から 18.0% お店・オフィス などから21.0%

90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 (年)

出典:全国地球温暖化防止活動推進センター(JCCCA)、1人あたり排出量は、総務省

なぜ、地球では温暖化が

日本の暮らしと地球環境

■日本のCO₂排出量の推移(1990 ~ 2012年)

総排出量

いるかを見てみましょう。

(百万トン

進んでいるのか考えてみよう

CO2は、工場やビル、家庭などでエネルギーを消費することで排

出されます。日本ではこのCO2が、どこからどのくらい排出されて

一人あたり排出量

(トン/人)

10.0

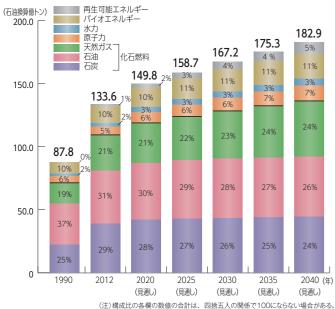
(注) 構成比の各欄の数値の合計は、四捨五入の関係で100にならない場合がある。

出典:全国地球温暖化防止活動推進センター (JCCCA)

2 天然ガスってなんだろう? 3

GAS

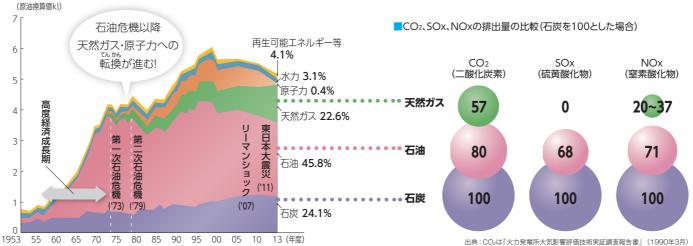
エネルギー資源と天然ガス


世界で、また日本ではどれだけのエネルギーを使っているのでしょうか。 エネルギーの多くを占める化石燃料は、どんな性質と特徴があるのでしょう。 なかでもクリーンなエネルギーといわれる天然ガスについてくわしく見てみましょう。

いろいろな

現在、世界中で使われているエネルギーは、2012年に約134億 トン(石油換算)で、1990年とくらべ約50%増加しています。そ の多くを化石燃料が占めており、今後も新興国の需要拡大ととも に、エネルギー消費が急速に伸びることが見込まれています。

■世界の一次エネルギー需要の実績(燃料別)



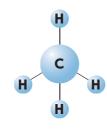
出典: OECD/IEA [WORLD ENERGY OUTLOOK 2014]

日本のエネルギー需要の移り変わり

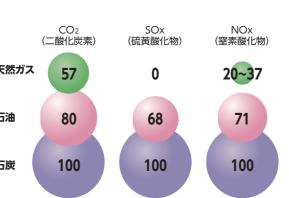
日本の一次エネルギー総供給量は、2013年に約5億6600万kl (原油換算)でした。1996年以降は若干の増減の範囲にとどまっ ています。供給の資源別では、石油の割合が大きいものの、天 然ガスや石炭、再生可能エネルギーがミックスされ、なかでも天 然ガスの割合が高まってきています。

■日本の一次エネルギー総供給の推移(資源別)

(注)構成比の各欄の数値の合計は、四捨五入の関係で100にならない場合がある。 出典: 平成25年度(2013年度)エネルギー需給実績(速報)


天然ガスって何からできているの?

天然ガスはその名の通り、自然界に存在 するガス(気体)で、主成分はメタン(C H4)です。地中から採掘するので、石 油や石炭と同様に化石燃料のひとつで すが、燃焼時のCO2などの排出が少な いクリーンなエネルギーです。効率性や 経済性からも有効なエネルギー源として 期待されています。


海底に泥といっしょに生物の

死がいが沈む。

天然ガスができるまで

定が記は圧縮されて泥岩になり、生物の死がいから「ケロジェン」という物質ができる。

SOx. NOxit[natural gas prospects] (1986) /OECD/IEA

天然ガスはいつまでとれるの?

化石燃料は、風力や太陽光などの再生可能エネルギーとは違い、 限りある資源です。現在確認されている埋蔵量から、今後ど れだけ採掘できるかを表わしたものが「可採年数」で、天然ガ スは約55年と計算されています。 埋蔵量が確認されていない 天然ガスもあり、可採年数が100年以上に伸びる可能性もあると 言われています。

ガス 石油

ガス、石油、水が発生する。

ケロジェン

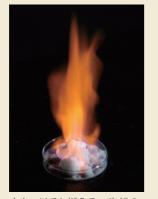
地底の地熱によってケロジェンから

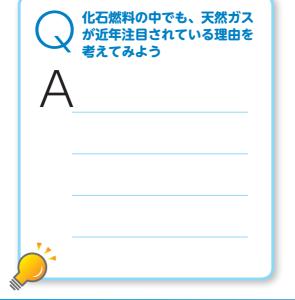
石炭、石油、天然ガスの特徴

	特徵			
石炭	輸入先が世界各地に分散している。燃焼時のCO2の排出量が大きい。			
石油	輸入先が中東地域に偏っている。燃焼時のCO2の排出量がやや大きい。			
天然ガス	輸入先が世界各地に分散している。燃焼時のCO2の排出量が化石燃料の中で一番少ない。			

環境にやさしく、 日本の近海でも埋蔵が 確認されている天然ガス。 期待が集まるよね。 いろいろな化石燃料が あるけれて、それぞれ特徴に

すき間の多い砂岩の中に、ガス、

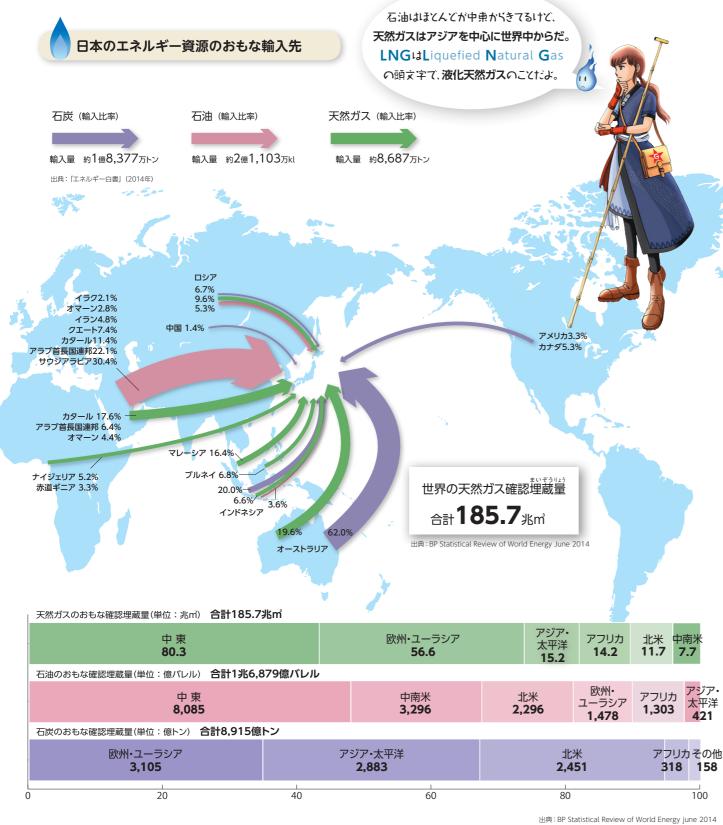

石油、水が重い順にたまる。


メタンハイドレート

メタンハイドレートは、天然ガスの主成分 であるメタンと水分子でできていて、深海 など低温で高圧の環境にある、氷状の物 質です。火をつけると燃えることから、「燃 える氷」とも呼ばれています。

日本近海には、大量のメタンハイドレート の存在が推測されており、その量は日本 の天然ガス使用量の100年分とも推定さ れています。生産技術の開発が望まれま すが、将来の有望な天然ガス資源として 期待されています。また、新たなエネル ギー源としてシェールガスの存在も注目さ れています。

火をつけると燃える、氷状の (写真は「人工」のメタンハイドレート)

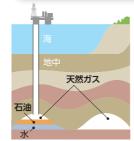


4 天然ガスってなんだろう? 天然ガスってなんだろう? 5

天然ガスに迫る

天然ガスはどこからやってくる?

いま日本で使っているエネルギーのほとんどは、海外から輸入しています。 天然ガスもアジアやオーストラリア、中東など世界各地から日本に届けられます。 では、日本の天然ガスの輸入先とその輸送方法などをみてみましょう。



日本の化石燃料の輸入先にはどんな 特徴があるか考えてみよう

天然ガスの採掘

何千メートルという地下にある天然ガ スを採掘するには、大規模な掘削装 置が必要です。掘削地点に鉄塔のよ うな「やぐら」を組み、多くの特殊な 装置を使って採掘します。

ダーウィン(オーストラリア)

天然ガスの輸送方法

天然ガスの輸送方法には、気体のままパイプラインで輸送する方 法と、液体にしてタンカーで輸送する方法の2種類があります。 生産地の近くや陸続きの国へはパイプラインで、生産地から遠い 海に囲まれた日本などへは、タンカーで運ばれてきます。

LNGタンカー

天然ガスから都市ガスへ

■日本のLNGの受け入れ基地

LNG受け入れ基地(TG袖ヶ浦)

LNGタンカーで日本に運ばれた液化天 然ガスは、国内にある受け入れ基地で 一度貯蔵されます。それを気化して熱 量を調整し、ガス漏れ時に気づきやす

天然ガスから液化天然ガスへ

天然ガス(気体)は、 LNG(液体)にして タンカーで運ばれます。 天然ガス -162℃ (気体)

> 大気圧下でマイナス 162℃まで冷 やすと、液化して体積が小さくなる。

LNG (液体) は 気体の 1/600 LNG (液体)

たくさんの量をタンカーに

ほとんどの気体は、 冷やすと液体になる。

天然ガスってなんだろう? 7 6 天然ガスってなんだろう?

さまざまな用途に 使われている天然ガス

気体で掘り出された天然ガスは、船にたくさん積むために、

液体の状態(液化天然ガス=LNG)で運ばれます。

日本に到着した後、液化天然ガスはどのように運ばれ、何に利用されているのか見てみましょう。 さまざまな用途に利用される都市ガスの原料も天然ガスです。

日本の都市ガスの主な用途

都市ガスの利用先は家庭用が約3割。近年、そのクリーン性や効率 性から、工業用・商業用としても利用が進んでいます。たとえば、 一度に大量の高熱を必要とする工場(鉄鋼、機械、製紙工場など) や、熱の調整が重要な食品製造(パンなどの調理)などで活躍して います。

液化された天然ガスは、マイ ナス162℃のLNGとなって、 タンカーで日本に運ばれます。

■都市ガスの製造工程

LNGタンカー

■都市ガスの用途別構成比(2013年度)

36,694

需要家件数

約2,950万件

53.5%

カスが家に 来るまで、 長い道のりたね~

出典: (一社)日本ガス協会

家庭用

26.0%

12.2%

LNG気化器

(ガスの貯蔵)

天然ガス自動車(NGV)の普及の推移

天然ガス自動車(NGV)は、ガソリンではなく天然ガスを燃料にした 自動車です。トラックからバス、乗用車、フォークリフトなどの特殊 車両まで幅広く普及しています。ガソリン車にくらべ、NOx、SOx、 CO₂、粒子状物質などの排出が少なく、クリーン性が特徴です。

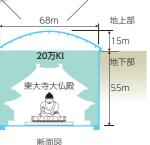
大型路線バス

配送トラック

ガス冷暖房の普及

学校やオフィスビル、病院や店舗など幅広い用途で普及しています。 冷暖房に必要なエネルギーに都市ガスを使用する事で利用の多い夏 場や昼間の電気使用を減らすことが出来ます。

ガスヒートポンプ室内機


ガスヒートポンプ室外機

地区ガバナ 中圧から低圧へ

家庭・ビル・工場・ 学校など

LNGはマイナス162℃ の液体のまま貯蔵され ます。そのためタンクの 内側は、超低温に耐えら れるような特別な金属 でできています。大きさ が20万klのものになる と、東大寺の大仏殿が 丸ごと入るほどで、約 28万件の1年分の使用 量をためることができ ます。

LNGタンク

LNG気化器のしくみ マイナス162℃のLNGが

オープンラック式

流れるパイプに海水をか けると、180℃近い温度差 があるため、あっという間 に気体にもどります。気体 にされたあとは、万一ガス もれが発生した場合でも 感知しやすいように臭い が付けられます。

ポリエチレン管

都市ガスを一時的にためておく役割をは

たします。夜など、あまりガスを使わない 時間に貯蔵し、たくさん使う時間にガスを 送り出す、いわばガスの調節場所です。

ガスホルダー

ポリエチレン管

土の中に埋められているガス管は、地震に 強く腐りにくいポリエチレン管等を使用 しています。

ガスメーター (マイコンメーター) ガスの使用量を

計り、震度5程度 以上の大きな地震があっ たときや. ガスがもれて多 くのガスが流れたときな ど、自動的にガスを止める 安全機能も備えています。

ガステーブル

ガス暖房器具

けられています。

都市ガス

主な成分

メタン

空気より軽い

ガス燈はなぜ生まれたか?

都市ガスとプロパンガス

都市ガスは、ガス工場から導管が通じているところへ供給さ

れますが、その設備が十分ではない地域では、ガスをつ

めた容器を個別に宅配する仕組みのプロパンガス(LPガ

ス)により供給されます。プロパンガスは石油を原料につ

くられており、都市ガスとは成分や特徴にちがいがありま す。また空気と比べた重さのちがいから、家庭のガス漏

れ警報器はプロパンガスは下に、都市ガスは上に取り付

プロパンガス

プロパン

科学×資本主義→ガス灯

マイナス162℃で液化し マイナス42℃で液化し

体積が**600分の1**になる 体積が**250分の1**になる

16世紀まで、光は神の力を研究する神学の一 種でした。しかし、17世紀(ガリレオが地動説 をとなえたころ)の科学技術の進歩が、実用と しての光をつくるという考えを生みました。 夜を昼のように明るくして、便利に暮らした い。次世代の灯りは、科学者や富裕層の関 心をひきつけました。 当時のガス灯の明るさは、現代 から見ると、ロウソクの灯りと大 差が見えません。しかし、 劇場や繁華街につけられ たガス灯は、未来の快適 な暮らしにつながる最先端 の光でした。

参考文献:『世界科学史話』中村邦光 創風社、『ガスとくらしの一世紀』ガス資料館編

天然ガスってなんだろう? 9 8 天然ガスってなんだろう?

想 GAS

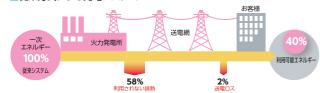
エネルギーのネットワーク

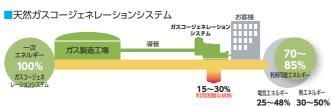
ガスエネルギーを活用した スマートな未来

家や自動車や工場などでも利用されている天然ガス。 わたしたちの未来をささえるエネルギーのひとつとして、 より効率よく利用する技術が開発されています。

地球環境と共存するエネルギー社会を考えてみましょう。

スマートエネルギーネットワーク


「スマートエネルギーネットワーク」とは、複数の地域やコミュニティ の中で、ガスコージェネレーションシステムや燃料電池、再生可 能エネルギーなどで作った電気と熱を、情報通信技術(ICT)を活 用して融通しあい、コミュニティ内での省エネ化・低炭素化や、災 害に強い街づくりを実現するものです。



ガスコージェネレーションシステム(エネルギーの有効利用)

「ガスコージェネレーションシステム」は、クリーンな天然ガスを燃 料に、ガスエンジンやガスタービン、燃料電池などで、使う場所で 電気を作ります。電気を作るときに生じる熱(廃熱)は、給湯や空調 に利用することができ、エネルギーを余すことなく使えるため、と ても効率的なエネルギーシステムとして、またエネルギーの"地産 地消"として注目されています。

■従来方式による発電システム

自然エネルギーとの連携

太陽光や風力などの自然エネルギーの活用には、自然の不安定な 要素が伴います。スマートエネルギーネットワークは、これら不安 定な供給源もとりこみ、都市ガスによる燃料電池などと組み合わせ

ることで、むだのないクリー ンなエネルギー供給を実現 できます。

太陽光パネル

水素ステーション

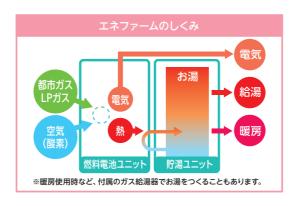
燃料電池自動車

水素ステーション

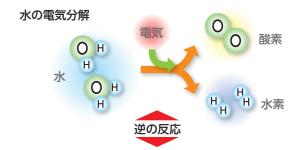
燃料電池自動車は、燃料電池で水素と酸素の化学反応によって発 電した電気エネルギーを使って走る自動車で、走行時に発生するの は水だけです。燃料となる水素は都市ガス等から製造され、水素 ステーションで補給します。

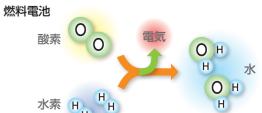
※水素は、他の化石燃料や自然 エネルギー等、多様なエネル ギーから製造可能。都市ガス は経済性、安定供給の点で 有望です。

太陽光発電

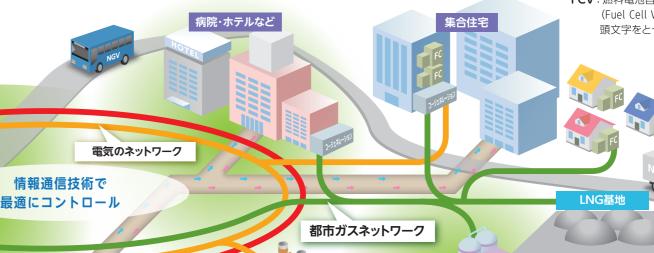

オフィスビル

家庭用燃料電池 エネファームの普及


家庭用燃料電池「エネファーム」は、自宅 で電気とお湯を同時に作ります。作った 電気は、照明やテレビ、冷蔵庫等に、お 湯はお風呂やシャワー、キッチンで利用 できます。エネルギーを無駄なく利用で き、全国各地で普及が進んでいます。



燃料電池の原理


燃料電池の原理は、「水の電気分解」を逆にしたものです。「水の 電気分解」は、水に外部から電気を通して水素と酸素に分解しま す。燃料電池はその逆で、水素と酸素を電気化学反応させて電 気と水を発生します。

FC: 燃料電池(Fuel Cell)の 頭文字をとったもの。

FCV: 燃料電池自動車 (Fuel Cell Vehicle)の 頭文字をとったもの。

一般商用電力

熱のネットワーク

地域冷暖房

地区プラント(1ヶ所または数ヶ所)で集中的に 冷水や蒸気を製造し、エリア全体(一定の地 域の複数の建物)の冷暖房や給湯などに利用 するシステムです。都市部を中心に普及して います。

バイオガス供給

10 天然ガスってなんだろう? 天然ガスってなんだろう? 11

コージェネレーション

地域冷暖房

燃料電池

廃熱利用設備

ガス関連の出来事	西暦	その頃の出来事
720年『日本書紀』に「火井(天然ガスの噴出口)」が表記される。	700年	710年 平城京に遷都。 712年 『古事記』成立。
1609年 ベルギーのヘルモントが過熱した石炭から奇妙な気体を発見する。その後イギリスで、石炭からとりだしたガスを照明に利用。	1600年	1600年 関ケ原の戦い。
4702/T / WUT T WEET O WIT IT IS O / C to 7	1700年	1698年 トーマス・セイヴァリ蒸気ポンプを発明。 (産業革命の始まり)
1792年 イギリスで世界最初のガス灯がつくられる。 1811年 橘 崑崙の『北越奇談』に"古の七奇"として「火井臭水	1800年	1800年 伊能忠敬が日本の測量を開始。 1804年 フランスでナポレオンが皇帝になる。
(石油)」などが紹介される。 1812年 イギリスに世界最初のガス会社が設立される。		1815年 杉田玄白『蘭学事始』が出版される。
1839年 イギリスのグローブ卿が世界で初めて燃料電池の実験に成功。		1853年 ペリー、浦賀に来航。
1855年 フランスで開かれた第1回パリ万博で、ガス灯が世界的に知られる。 1872年 横浜で日本初のガス事業が始まる。 太陽暦(現在の暦)を採用。		1867年 大政奉還される。 1868年 明治に改元される。 1872年 新橋・横浜間の鉄道が開通。
1874年 東京でガス製造工場が稼働し、銀座通りにガス灯が点灯。 1902年 ガスかまどが発明される。	1900年	1877年 西南戦争始まる。 1879年 琉球藩を廃し、沖縄県となる。 エジソン白熱電球を発明。
1904年 ガスストーブが販売される。 かに型のガスストーブ 1907年 東京勧業博覧会(上野公園)で瓦斯館を開設。 1957年 ガス自動炊飯器の販売開始。 1964年 国立競技場に日本初のガスコージェネレーションシステムが導入。		1914年 パナマ運河が完成。日露戦争が始まる。 1923年 関東大震災発生。 1941-45年 太平洋戦争。 1953年 テレビ放送開始。 1964年 東京でオリンピックが開催される。
1965年 燃料電池が宇宙船ジェミニ5号に搭載。世界初の実用化。 1969年 LNGタンカー第1船が日本に入港する。 1970年 蔵前国技館に初のガス冷房が設置される。 1971年 ガスを利用した「地域冷暖房」が始まる。	1970年	1969年 アポロ11号月面着陸に成功する。 1970年 大阪で日本万国博覧会開催。 1973年 第一次オイルショック。 1978年 第二次オイルショック。
1980年 都市ガス警報器が開発される。 ガスファンヒーター誕生。 1983年 マイコンメーターが開発される。	1980年	
1984年 天然ガス自動車試作第一号導入される。	1990年	1993年 屋久島・白神山地が世界遺産となる。 1995年 阪神・淡路大震災発生。 1998年 長野冬季オリンピック大会開催。 2002年 FIFAワールドカップ™日韓大会開催。
2005年 家庭用燃料電池の登場。		2003年 小惑星探査機「はやぶさ」打ち上げ。 2005年 知床が世界遺産となる。 2006年 国際天文学連合で、冥王星が惑星から準惑星に分類が 変更される。
2009年 家庭用燃料電池コージェネレーションシステム「エネファーム」が首相官邸に世界初の商用1号機として導入される。	2010年	
2011年 天然ガス自動車導入台数、全国で4万台突破。 2014年 エネファームの普及台数が10万台突破。		2011年 東日本大震災発生。 2012年 山中伸弥教授がノーベル賞受賞。日本人で17人目となる。 2013年 富士山が世界遺産となる。 2014年 富岡製糸場が世界遺産となる。
燃料電池自動車が販売される。	2020年	2020年 東京オリンピック・パラリンピック開催予定。 2027年 首都圏と中京圏間を結ぶリニア中央新幹線が営業運転開始を予定。

地球にやさしいクリーンエネルギー

天然ガスってなんだろう?

平成27年2月 発行 <発行> 株式会社日本教育新聞社 〒 105-8436 東京都虎ノ門 1-2-8 虎ノ門琴平タワー 8階 TEL: 03-5510-7800 FAX: 03-5510-7802 http://www.kyoiku-press.co.jp

<制作協力>

一般社団法人 日本ガス協会